Разновидности
Ветряки классифицируются по нескольким параметрам:
- расположению оси относительно земли. По этому признаку ветряки бывают горизонтальными (имеющие более высокую мощность, надежность) и вертикальные. Эти ветрогенераторами своими руками намного чувствительнее к ветряным порывам;
- шагу винта, который бывает фиксированным (более распространены) и изменяемым. У последнего увеличена скорость вращения, но установка очень сложна для исполнения и массивна.
Ветряк своими руками сделать получится практически бесплатным, если найдутся ненужные детали, без дела валяющиеся где-то в гараже: мотор старого авто, обрезанные канализационные трубы и др.
Расчет мультипликатора
Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.
Для самодельной конструкции наиболее оптимальное решение — это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.
При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.
Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.
Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А — согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов — для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа — без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.
Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).
Зарядка батарей
Ветряк заряжает две батареи, что соединены параллельно. Просто подсоединяем контакты генератора к клеммам батарей, при этом стоит впаять диод в провод питания, чтобы убедится в том, что электричество не пойдет от батареи к мотору, вращая его словно вентилятор, также необходимо установить контроллер заряда. Это беспроигрышный вариант для тех, у кого нет возможности часто проверять заряд батарей.
Рекомендую также приобрести к установке нагрузочное сопротивление. Контроллер будет перенаправлять электрический ток, от генератора к сопротивлению, когда батареи полностью заряжены. Необходимо убедится в том, что ветрогенератор всегда должен быть под нагрузкой, для предотвращения выхода из строя мотора. В моем случае нагрузочное сопротивление не выполняет своей функции по той причине, что мои батареи никогда не заряжаются полностью (они всегда под нагрузкой).
Проводка в моем проекте выглядит ужасно, но не переживайте в интернете полно схем подключения контроллера заряда.
Кол-во блоков: 15 | Общее кол-во символов: 14638
Количество использованных доноров: 3
Информация по каждому донору:
- https://Energo.house/veter/kontroller-dlya-vetrogeneratora.html: использовано 3 блоков из 5, кол-во символов 3660 (25%)
- http://mozgochiny.ru/electronics-2/samodelnyiy-vetrogenerator-na-400-vt/: использовано 9 блоков из 10, кол-во символов 7796 (53%)
- https://zetsila.ru/%D0%B2%D0%B5%D1%82%D1%80%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B8/: использовано 2 блоков из 3, кол-во символов 3182 (22%)
На чем основана ветровая генерация
Ветровая генерация – это способность получать электричество из энергии ветра. Ветрогенератор – это, по сути, солнечный генератор: ветра образуются из-за неравномерного прогрева поверхности Земли солнцем, вращения планеты и ее рельефа. Генераторы используют движение воздушных масс и преобразовывают его в электричество посредством механической энергии.
Перед тем как приступить к изготовлению ветрогенератора, необходимо тщательно ознакомиться с инструкцией
На основе принципа ветрогенерации может быть построена как целая электростанция, так и возведены автономные устройства для обеспечения электричеством отдельных районов и даже домов. На сегодня, 45% всей энергии вырабатывается с помощью ветряных генераторов. Самая большая ветроэлектростанция находится в Германии, и каждый год производит до 7 млн. кВт энергии в час. Поэтому, все чаще, владельцы загородных домов в далеких регионах и селах задумываются об использовании ветровой энергии в бытовых целях. При этом, ветряки могут использоваться как единственный, так и дополнительный источник энергии.
Средние цены
Как правило контроллер для ветровой установки изготавливается компанией, производящей ветровые генераторы и поставляется комплектно с прочим оборудование. Однако, по ряду причин, иногда появляется потребность приобрести данный прибор отдельно от основного комплекта. В этом случае необходимо выбрать устройство в соответствии с техническими характеристиками системы и бренда производителя, который является предпочтительнее для каждого индивидуального пользователя.
На рынке данного оборудования представлены следующие, наиболее популярные модели:
«WWS03A-12», производство Китай.
Технические характеристики:
- Мощность — 0.2 кВт;
- Максимальная входная мощность – 0,3 кВт;
- Напряжение постоянного тока – 12,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 9000,00 рублей.
«WWS04A-12», производство Китай.
Технические характеристики:
- Мощность — 0.4 кВт;
- Максимальная входная мощность – 0,6 кВт;
- Напряжение постоянного тока – 12,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 12000,00 рублей.
«WWS10A-24-E», производство Китай.
Технические характеристики:
- Мощность — 1.0 кВт;
- Максимальная входная мощность – 2,0 кВт;
- Напряжение постоянного тока – 24,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 22000,00 рублей.
«Exmork ZKJ-B 1.5 KW-48 Vdc», производство Россия.
Технические характеристики:
- Мощность — 1.5 кВт;
- Максимальная входная мощность – 2,0 кВт;
- Напряжение постоянного тока – 48,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +65,0 ℃;
- Габаритные размеры – 430х340х220 мм;
- Габаритные размеры внешнего блока ТЭНов – 360х330х200 мм;
- Вес контроллера – 9,0 кг;
- Вес блока внешних ТЭНов – 5,0 кг.
Стоимость устройства – от 27000,00 рублей.
«Exmork ZKJ-B 2KW-24 Vdc», производство Россия.
Технические характеристики:
- Мощность — 2.0 кВт;
- Максимальная входная мощность – 2,5 кВт;
- Напряжение постоянного тока – 24,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +40,0 ℃;
- Габаритные размеры – 590х490х315 мм;
- Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
- Вес контроллера – 23,0 кг;
- Вес блока внешних ТЭНов – 15,5 кг.
Стоимость устройства – от 46000,00 рублей.
«Exmork ZKJ-B 5KW-48Vdc», производство Россия.
Технические характеристики:
- Мощность — 5.0 кВт;
- Максимальная входная мощность – 5,5 кВт;
- Напряжение постоянного тока – 48,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +40,0 ℃;
- Габаритные размеры – 590х490х315 мм;
- Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
- Вес контроллера – 43,0 кг;
- Вес блока внешних ТЭНов – 17,0 кг.
Стоимость устройства – от 89000,00 рублей.
Как подключить контроллер к ветрогенератору?
Контроллер — это самый первый прибор, на который подается напряжение, выработанное генератором. Подключение контроллера производится посредством специальных клемм. Генератор подключается ко входу, а выходные клеммы соединяются с аккумуляторными батареями.
Существует множество схем для самостоятельного изготовления, в которых всего несколько простых деталей. Такие схемы легко реализуются даже людьми с начальной подготовкой, они надежны и нетребовательны. При самостоятельном изготовлении ветряка такие схемы обеспечивают полноценное функционирование, а отсутствие каких-то дополнительных возможностей не является значительным минусом. Чем меньше элементов в схеме, тем она надежнее и меньше подвержена отказам или поломкам, поэтому вариант наиболее удачный.
Подключение ветряка к аккумулятору
Подключение аккумулятора к генератору производится через выпрямитель — диодный мост. Аккумуляторные батареи нуждаются в постоянном токе, а генератор ветряка выдает переменку, причем, весьма нестабильную по амплитуде. Выпрямитель изменяет переменный ток, модифицируя его в постоянный
Если генератор трехфазный, то необходимо использовать трехфазный выпрямитель, на это надо обращать особенное внимание
Аккумуляторы обычно не новые, они способны закипеть. Поэтому настоятельно рекомендуется использовать хотя бы простенький контроллер, изготовленный из реле-регулятора. Он вовремя отключит зарядку и сохранит работоспособность аккумуляторных батарей. В любом случае не следует экономить на оборудовании и сокращать состав комплекта, так как от него зависит полноценная работа всей ветроустановки.
Подключение однофазного ветрогенератора к трехфазному контроллеру
Однофазный генератор может быть подключен к трехфазному контроллеру либо на одну фазу, либо параллельно на все три. Более правильным вариантом считается использование одной фазы, т. е. ветряк подключается к двум контактам — защемляющему и одному фазному. Это обеспечит правильную обработку напряжения и выдачу его на приборы потребления.
В целом, использование таких разнородных устройств нецелесообразно. Кроме того, путаница с вариантами подключения способна создать значительную угрозу целостности оборудования, что недопустимо. При сборке комплекта надо сразу определиться с его составом и типом смежных приборов, чтобы не допустить использования разноплановых устройств в единой связке. Допускать рискованные соединения можно только подготовленным людям, являющимися специалистами в электротехнике, хотя сами они подобные действия решительно отвергают.
Принцип действия контроллера для ветрогенератора
Для различных типов ветровых генераторов используют различные виды и конструкции контроллеров, но основные принципы работы подобных устройств, можно разделить на два типа, это:
- Для ветровых установок относительно не большой мощности: при достижении напряжения на клеммах аккумуляторных батарей выше 15,0 В, контроллер перемыкает обмотки генератора, что приводит к остановке вращения лопастей ветровой установки. При снижении напряжения до 13,5 В, контроллер дает команду на разблокировку обмоток, и установка начинает работать в нормальном режиме.
- Для мощных ветровых установок – в комплекте с электронным блоком контроллера монтируется балластный резистор с большим сопротивлением. При достижении напряжения на клеммах аккумуляторов в 14,0 – 15,0 В, контроллер не отключает ветровую установку, а «лишнюю» энергию сжигает на балластном сопротивлении. В качестве балласта могут быть использованы нагревательные элементы (ТЭНы), служащие для нагрева воды в системах горячего водоснабжения или отопления зданий и сооружений.
Что такое контроллер заряда для ветрогенератора
Контроллер – это электронное устройство, отвечающее за преобразование переменного напряжения, вырабатываемого генератором в постоянное, и контроль заряда аккумуляторных батарей. Наличие контроллера в схеме работы ветровой установки позволяет осуществлять работу ветрового генератора в автоматическом режиме вне зависимости от внешних факторов (скорость ветра, погодные условия и т.д.).
Функцию контроля за величиной заряда выполняет балластный регулятор, или контроллер. Это электронное устройство, отключающее аккумулятор при возрастании напряжения, или сбрасывающее излишки энергии на потребитель — ТЭН, лампу или иной простой и нетребовательный к некоторым изменениям питания прибор. При падении заряда контроллер переключает АКБ в режим заряда, способствуя восполнению запаса энергии.
Первые конструкции контроллеров были простыми и позволяли только включать торможение вала. Впоследствии функции устройства были пересмотрены, и лишнюю энергию начали использовать более рационально. А с началом использования ветрогенераторов в качестве основного источника питания для дачных или частных домов проблема в использовании лишней энергии отпала сама собой, так как в настоящее время в любом доме всегда найдется, что подключить.
Как правильно подключить ветрогенератор?
Прежде, чем начинать рассмотрение правил подключения, надо определиться с составом комплекта. Ветрогенератор представляет собой целую систему оборудования, из которого вращающийся ветряк — только преобразователь энергии ветра во вращательное движение, заставляющее функционировать генератор.
Дальше напряжение подается на контроллер сигнала. Это прибор, следящий за состоянием аккумуляторных батарей. Если они загружены полностью, контроллер переключает их с режима зарядки на режим потребления, параллельно включая балластное сопротивление (потребитель) для снятия лишнего заряда.
Напряжение с аккумуляторов идет на инвертор, который преобразует постоянный ток аккумуляторов в стандартные 220 В, 50 Гц, которые питают бытовую технику, освещение и прочие приборы потребления.
Основные схемы
Возможны различные схемы подключения ветрогенератора. Основная коммутация остается неизменной, варианты касаются только присутствия дополнительного источника энергии. Различают:
- питание только от ветроустановки
- ветрогенератор работает в паре с сетевым электричеством. При разряде аккумуляторов происходит переключение на сетевые ресурсы, после зарядки батарей установка вновь переключается на обеспечение потребителей
- подключение параллельно с бензогенератором. Разряд батарей инициирует запуск бензогенератора, затем обратное подключение ветряка
- параллельное подключение с солнечными батареями. Один из наиболее часто встречающихся комплектов. Используются солнечные батареи, работающие параллельно с ветряком и, по необходимости, берущие на себя основное обеспечение потребителей
- на Западе излишки выработанной энергии сбрасываются в сеть, за что владелец ветряка получает некоторую плату. В России такого оборудования пока не имеется, поэтому излишки попросту утилизируются с помощью балластных сопротивлений.
Сетевая схема подключения
Сетевая схема представлена в двух вариантах:
- сетевая схема без аккумуляторов. Выработанная энергия отдается в сеть, а потребители питаются из нее. Владелец платит только за разницу между выработанной и потребленной энергией. В России такой вариант не реализован
- сетевая схема с аккумуляторами. В данном случае подключение к сети используется только при разряде аккумуляторов, т.е. сетевые ресурсы используются как гарантия.
Такая схема подключения имеет свои достоинства и недостатки, но для того, чтобы она была действительно выгодной, надо, чтобы выработанной энергии хватало на обеспечение большого количества потребителей, а оборудование стоило довольно дешево. В противном случае проще постоянно пользоваться сетевой энергией, а ветряк держать на случай внезапных перебоев. Так будет надежнее, проще и появится возможность увеличить срок службы ветрогенератора.
Строительство своими руками
Ветровой генератор является дорогим удовольствием. При желании установить его на своей территории стоит учитывать следующие моменты:
- наличие подходящей местности;
- преобладание частых и сильных ветров;
- отсутствие иных альтернативных источников энергии.
В противном случае ветряная станция не даст ожидаемого результата. Так как спрос на альтернативную энергию возрастает с каждым годом, а покупка ветряка – это ощутимый удар по семейному бюджету, можно попробовать сделать агрегат своими руками с последующей установкой. Изготовление ветряка может быть основано на неодимовых магнитах, редукторе, лопастях и их отсутствии.
Преимуществ у созданного собственноручно ветряка довольно много. Поэтому при большом желании и наличии элементарных способностей конструктора, практически любой мастер может построить станцию для генерации электроэнергии на своем участке. Самым простым вариантом устройства считается ветряк с вертикальной осью. Последней не требуется опора и высокая мачта, а процедура монтажа характеризуется простотой и быстротой.
Для создания ветрогенератора потребуется подготовить все нужные элементы и зафиксировать на выбранное место модуль. В составе самодельного вертикального генератора энергии обязательным считается присутствие таких элементов:
- ротора;
- лопастей;
- осевой мачты;
- статора;
- аккумулятора;
- инвертора;
- контроллера.
Лопасти можно сделать из легкого упругого пластика, так как иные материалы могут повреждаться и деформироваться под влиянием высоких нагрузок. Первым делом из труб ПВХ необходимо вырезать 4 равные детали. После этого из жести нужно выкроить пару полукруглых фрагментов и зафиксировать их по краям труб. В данном случае радиус лопастной части должен составлять 69 см. При этом высота лопасти будет достигать 70 см.
Чтобы собрать роторную систему, необходимо взять 6 неодимовых магнитов, 2 ферритовых диска с диаметром 23 см, клей для скрепления. На первом диске следует разместить магниты, учитывая угол 60 градусов и диаметр расположения 16,5 см. Согласно этой же схеме собирают второй диск, а магниты заливают клеем. Для статора нужно подготовить 9 катушек, на каждую из которых намотать 60 витков медной проводки с диаметром в 1 мм. Пайку необходимо проводить в следующей последовательности:
- начало первой катушки с окончанием четвертой;
- начало четвертой катушки с окончанием седьмой.
Вторая фаза собирается аналогичным образом. Далее из фанерного листа производят форму, дно которой застилают стекловолокном. Поверх монтируются фазы из спаянных катушек. Заливку конструкции проводят клеем и оставляют на несколько дней для склеивания всех деталей. После этого можно приступать к соединению отдельных элементов ветрогенератора в единое целое.
Чтобы собрать конструкцию в верхнем роторе, следует проделать 4 отверстия под шпильки. Магнитами вверх на кронштейн устанавливается нижний ротор. После этого нужно разместить статор с отверстиями, необходимыми для монтажа кронштейна. В пластину из алюминия следует упереть шпильки, после этого накрыть вторым ротором магнитами вниз.
При помощи гаечного ключа необходимо вращать шпильки так, чтобы ротор равномерно и без рывков опускался вниз. Когда нужное место будет занято, шпильки стоит выкрутить и убрать пластины из алюминия. По окончании работы конструкцию нужно зафиксировать при помощи гаек и не жестко их затянуть.
В качестве мачты подойдет прочная труба из металла, имеющая длину от 4 до 5 метров. К ней прикручивают заранее собранный генератор. После этого фиксируют каркас с лопастями к генератору, а мачтовую конструкцию устанавливают на площадку, что подготовлена заранее. Положение системы фиксируется с помощью растяжки.
В следующем видео представлен обзор самодельного ветряка.
Устройство конструкции
Конструкция ротора проста. Трое аэродинамических крыльев закреплены на радиальных балках. Существуют три типа турбины Дарье:
- Классический. Лопасти имеют форму полумесяца. Их размер достаточно большой — почти сравним с длиной основной оси. Основание имеет прочный устойчивый полукруглый фундамент.
- Тип Н. Три крыла, имеющие прямую форму и расположенные относительно горизонтальных опор под прямым углом, находятся на верхнем отсеке конструкции. Опоры крепятся к несущей оси. Достоинства этой конструкции — быстроходность, высокая эффективность, полное отсутствие инфразвука. Ротор Н-образного типа прост в сборке и ремонте, надежней классической ветровой турбины Дарье, дешевле — и поэтому распространен в применении.
- Винтообразный тип. Лопасти изготовлены в виде изогнутых спиралей. Они также расположены на верхнем отсеке несущей оси вращения. Благодаря закрученной форме крыльев, вращение ротора происходит равномернее. Благодаря этому нагрузка на несущие узлы снижается, а срок службы механизма увеличивается.
Для обеспечения работы бытовых электростанций чаще всего используется ротор Савониуса Дарье. Такое название носит ветровая турбина, совмещенная с ротором Савониуса, который выступает в роли стартёра (устройства запуска). Комбинированная конструкция отличается большей мощностью и производительностью по сравнению с «чистыми» типами. Область применения механизма не ограничивается только электростанциями — он может быть совмещен с теплогенератором и быть использован в системе теплоснабжения. А еще такой гибрид соединяют с насосами и применяют для закачки и откачки воды.
Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы. Самостоятельно она запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю.
Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна, поэтому он стоит дорого.
Неоспоримое достоинство ротора всех видов — отсутствие зависимости от силы и направления ветрового потока. Допустимо расположение на прилегающей территории иных сооружений, что облегчает проведение ремонтных работ.
Своими руками
Приобретение готового ветрогенератора не по карману большинству пользователей. Кроме того, стремление мастерить разные механизмы и приспособления неискоренимы в народе, а если появляется еще и насущная необходимость — решение вопроса однозначно. Рассмотрим, как сделать ветрогенератор своими руками.
Простейший ветрогенератор для освещения дачи
Самые простые конструкции используются для освещения участка или питания насоса, подающего воду. В процессе участвуют, как правило приборы потребления, не боящиеся скачков напряжения. Ветряк вращает генератор, напрямую подключенный к потребителям, без промежуточного комплекта, стабилизирующего напряжение.
Ветряк своими руками из автомобильного генератора
Генератор от автомобиля является оптимальным вариантом при создании самодельного ветряка. Он нуждается в минимальной реконструкции, в основном — перемотке катушки более тонким проводом с большим числом витков. Модификация минимальна, а полученный эффект позволяет использовать ветряк для обеспечения дома. Понадобится достаточно скоростной и мощный ротор, способный вращать устройства с большим сопротивлением.
Ветрогенератор из стиральной машины
Электродвигатель от стиральной машины часто используют для создания генератора. Оптимальным вариантом является установка на ротор сильных неодимовых магнитов, обеспечивающих возбуждение обмоток. Для этого необходимо просверлить в роторе углубления, диаметром равные размеру магнитов.
Затем они устанавливаются в гнезда с чередованием полярности и заливаются эпоксидкой. Готовый генератор устанавливается на вращающуюся вокруг вертикальной оси площадку, на вал насаживается крыльчатка с обтекателем. Сзади к площадке крепится хвостовой стабилизатор, обеспечивающий наведение устройства.
Строительство своими руками
Ветровой генератор является дорогим удовольствием. При желании установить его на своей территории стоит учитывать следующие моменты:
- наличие подходящей местности;
- преобладание частых и сильных ветров;
- отсутствие иных альтернативных источников энергии.
В противном случае ветряная станция не даст ожидаемого результата. Так как спрос на альтернативную энергию возрастает с каждым годом, а покупка ветряка – это ощутимый удар по семейному бюджету, можно попробовать сделать агрегат своими руками с последующей установкой. Изготовление ветряка может быть основано на неодимовых магнитах, редукторе, лопастях и их отсутствии.
Преимуществ у созданного собственноручно ветряка довольно много. Поэтому при большом желании и наличии элементарных способностей конструктора, практически любой мастер может построить станцию для генерации электроэнергии на своем участке. Самым простым вариантом устройства считается ветряк с вертикальной осью. Последней не требуется опора и высокая мачта, а процедура монтажа характеризуется простотой и быстротой.
Для создания ветрогенератора потребуется подготовить все нужные элементы и зафиксировать на выбранное место модуль. В составе самодельного вертикального генератора энергии обязательным считается присутствие таких элементов:
- ротора;
- лопастей;
- осевой мачты;
- статора;
- аккумулятора;
- инвертора;
- контроллера.
Лопасти можно сделать из легкого упругого пластика, так как иные материалы могут повреждаться и деформироваться под влиянием высоких нагрузок. Первым делом из труб ПВХ необходимо вырезать 4 равные детали. После этого из жести нужно выкроить пару полукруглых фрагментов и зафиксировать их по краям труб. В данном случае радиус лопастной части должен составлять 69 см. При этом высота лопасти будет достигать 70 см.
Чтобы собрать роторную систему, необходимо взять 6 неодимовых магнитов, 2 ферритовых диска с диаметром 23 см, клей для скрепления. На первом диске следует разместить магниты, учитывая угол 60 градусов и диаметр расположения 16,5 см. Согласно этой же схеме собирают второй диск, а магниты заливают клеем. Для статора нужно подготовить 9 катушек, на каждую из которых намотать 60 витков медной проводки с диаметром в 1 мм. Пайку необходимо проводить в следующей последовательности:
- начало первой катушки с окончанием четвертой;
- начало четвертой катушки с окончанием седьмой.
Вторая фаза собирается аналогичным образом. Далее из фанерного листа производят форму, дно которой застилают стекловолокном. Поверх монтируются фазы из спаянных катушек. Заливку конструкции проводят клеем и оставляют на несколько дней для склеивания всех деталей. После этого можно приступать к соединению отдельных элементов ветрогенератора в единое целое.
Чтобы собрать конструкцию в верхнем роторе, следует проделать 4 отверстия под шпильки. Магнитами вверх на кронштейн устанавливается нижний ротор. После этого нужно разместить статор с отверстиями, необходимыми для монтажа кронштейна. В пластину из алюминия следует упереть шпильки, после этого накрыть вторым ротором магнитами вниз.
При помощи гаечного ключа необходимо вращать шпильки так, чтобы ротор равномерно и без рывков опускался вниз. Когда нужное место будет занято, шпильки стоит выкрутить и убрать пластины из алюминия. По окончании работы конструкцию нужно зафиксировать при помощи гаек и не жестко их затянуть.
В качестве мачты подойдет прочная труба из металла, имеющая длину от 4 до 5 метров. К ней прикручивают заранее собранный генератор. После этого фиксируют каркас с лопастями к генератору, а мачтовую конструкцию устанавливают на площадку, что подготовлена заранее. Положение системы фиксируется с помощью растяжки.
В следующем видео представлен обзор самодельного ветряка.
Обслуживание ветрогенератора
Ветрогенератор, как и любое другое устройство, нуждается в техническом контроле и обслуживании. Для бесперебойной работы ветряка периодически проводят следующие работы.
- Наибольшего внимания требует токосъёмник. Щётки генератора нуждаются в чистке, смазке и профилактической регулировке раз в два месяца.
- При первых признаках неисправности лопастника (дрожание и разбалансировка колеса) ветрогенератор опускают на землю и ремонтируют.
- Раз в три года металлические детали покрывают антикоррозийной краской.
- Регулярно проверяют крепления и натяжение тросов.
Теперь, когда установка окончена, можно подключать приборы и пользоваться электроэнергией. По крайней мере, пока ветрено.
Подводя итоги вышеизложенному
Ветряные генераторы, если они сделаны по всем правилам, могут помочь сэкономить на потреблении электроэнергии. А если они будут подключены к электросети частного дома через аккумуляторные батареи большой ёмкости, вполне возможно, что об оплате счетов за свет владелец и вовсе забудет. К тому же здесь уже можно будет не опасаться скачков напряжения, способных вывести бытовую технику и электронику из строя. А ведь с каждым днём подобных высокотехнологичных гаджетов в домах становится всё больше. А значит, не стоит жалеть свободного времени, которое хочется провести на диване перед плазменной панелью. Лучше потратить его как раз на защиту этой панели. В противном случае может случиться так, что в следующий выходной придётся везти её в ремонт или вовсе приобретать новую. Задумайтесь, нужно ли вам терять деньги вместо того, чтобы их экономить.
Watch this video on YouTube